Silahkan pilih menu Label Blog :

RANGKAIAN PENGHITUNG (COUNTER) & ILMU DIGITAL ELEKTRONIKA

KATA PENGANTAR
Dengan adanya perkembangan teknologi yang semakin berkembang tiap waktu, khususnya di bidang Elektronika saat ini hampir  seluruh peralatan Elektronika menggunakan sistem Digital.
Penulis menyadari masih banyak kekurangan dan keterbatasan di dalam tulisan ini maka dari itu saran dan kritik yang bersifat konstruktif sangat penulis harapkan guna perbaikan dan penyempurnaan tulisan ini.
Baik lah Mas bro———qt langsung  aja …….
COUNTER atau Rangkaian Penghitung adalah rangkaian logika sekuensiai yang dapat dipergunakan untuk menghitung jumlah pulsa yang masuk dan dinyatakan dengan bilangan Biner.
  1.  4 BIT BINARY COUNTER
Sesuai dengan namanya 4 BIT Binary Counter adalah suatu rangkaian logika yang terdiri dari 4 buah Flip-Flop yang mampu melaksanakan perhitungan sampai bilangan 16. Rang­kaiannya adalah seperti pada gambar di bawah ini:
Gambar 1. Rangkaian Flip-Flop 4 BIT
  Seperti terlihat pada gambar di atas keempat Flip-Flop dihubungkan secara seri dan hanya 1 buah Flip-Flop yang dihubungkan ke sumber pulsa sebagai input.
Prinsip Kerja 4 BIT Binary Counter
Sebelum perhitungan dimulai, keempat output DCBA dibu.it 0000 dengan jalan dibuat Clear dalam kondisi 0 walaupun sesaat.
Pada saat pulsa pertama datang dan bergerak dari 1 ke 0, maka output QA akan berubah dari 0 menjadi 1. Output OM akan tetap 0 karena signal yang masuk pada Flip-Flop “M” berubah dari 0 menjadi 1. Flip-Flop C dan C outputnya juga tidak berubah karena belum ada perubahan pada bagian out- putnya. Dalam keadaan ini, kondisi output DCBA = 0001. Jadi sesudah pulsa yang pertama pada output counter akan ter­bentuk angka 0001 dan pada saat pulsa kedua datang dan bergerak dari 1 menjadi 0, maka output QA akan berubah dari 1 menjadi 0. Perubahan ini akan diteruskan ke Flip-Flop “B”. Akibatnya karena input Flip-Flop “B” berubah dari 0 ke 1, maka output QB akan berubah dari 0 ke 1. Output Flip-Flop C dan D belum berubah karena belum ada perubahan pada bagian out- putnya. Setelah pulsa kedua datang, maka keempat output DCBA akan menunjukkan DCBA = 0010, selanjutnya apabila pulsa ketiga datang output DCBA = 0011.
Begitulah seterusnya sampai pulsa ke 15 datang maka keempat outputnya DCBA = 1111 dan pada saat pulsa ke 16 datang, maka seluruh outputnya DCBA akan kembali menjadi 0000.
Dari uraian di atas, maka dapat ditarik kesimpulan bahwa BCD Counter 4 BIT Binary Counter hanya bisa menghitung sampai bilangan ke 16 yaitu dari mulai 0000 = 0 sampai 1111 = 15.
Salah satu dari Komponen Integrated (IC) yang berfungsi sebagai 4 BIT BINARY COUNTER adalah IC Tipe 54/741766 (Presettable Decode Counter) adalah seperti gambar dibawah ini

Gambar 2. Presettable Decode Counter
Diagram Logik dari Komponen IC tipe 54/74176 adalah seperti gambar dibawah ini.

 Gambar 3. 4 BIT Binary Counter
Kalau kita perhatikan, dari gambar di atas akan terlihat:
Frekuensi QA  = 1/2 dari Ain
QB   = 1/4 dari Ain
QC   = 1/8 dari Ain
QD  = 1/16 dari Ain
Dengan demikian maka 4 BIT Binary Counter mampu membagi frekuensi menjadi 16 kali. Oleh karena itu 4 BIT Binary Counter dapat juga disebut DIVIDE BY 16 COUNTER atau MODULUS 16 COUNTER.
Proses menghitung seperti di atas lebih jelasnya dapat dilihat pada Tabel di bawah ini:
PULSA D C B A
KEADAAN AWAL 0 0 0 0
PULSA KE-1 0 0 0 1
PULSA KE-2 0 0 1 0
PULSA KE-3 0 0 1 1
PULSA KE-4 0 1 0 0
PULSA KE-5 0 1 0 1
PULSA KE-6 0 1 1 0
PULSA KE-7 0 1 1 1
PULSA KE-8 1 0 0 0
PULSA KE-9 1 0 0 1
PULSA KE-10 1 0 1 0
PULSA KE-11 1 0 1 1
PULSA KE-12 1 1 0 0
PULSA KE-13 1 1 0 1
PULSA KE-14 1 1 1 0
PULSA KE-15 1 1 1 1
PULSA KE-16 0 0 0 0
Seperti keadaan awal
PULSA KE-17 0 0 0 1
Seperti pada Pulsa ke-1
Berdasarkan cara kerjanya, maka Counter dapat digolongkan menjadi:
  • -       UP COUNTER
  • -       DOWN COUNTER
  • -       UP – DOWN COUNTER
1.2.    UP COUNTER
Up Counter adalah jenis Counter yang dapat menghitung dengan urutan dari bawah ke atas. Salah satu contoh dari Up Counter 4 BIT Binary Counter adalah seperti yang baru dibahas di atas.
1.3.    DOWN COUNTER
Down Counter adalah kebalikan dari Up Counter yaitu Counter yang dapat menghitung dengan urutan mulai dari atas ke bawah atau dimulai dari bilangan yang paling besar menuju bilangan paling kecil. Contoh dari Down Counter adalah seperti pada gambar di bawah ini:

Gambar 4. Down Counter
Prinsip Kerja:
Sebelum pulsa pertama datang semua output Flip-Flop di Reset menjadi DCBA = 0000. Pada saat pulsa pertama datang dan masuk ke input, maka pada output Q Flip-Flop A akan berubah dari 0 menjadi 1 dan Q akan berubah dari 1 menjadi 0. Perubahan ini akan diteruskan kepada Flip-Flop B, Flip-Flop C dan Flip-Flop D yang masing-masing akan menghasilkan Qb, Qc dan Qd sama dengan 0. Jadi setelah pulsa pertama masuk output DCBA =1111.
Pada saat pulsa kedua datang, maka output Flip-Flop A akan berubah dari 1 menjadi 0, tetapi pada perubahan Q dari logic 0 menjadi 1 tidak mempengaruhi output Flip-Flop B, C dan D sehingga output DCBA = 1110.
Demikianlah proses perlangsungng terus sampai datang pulsa ke-15. Setelah pulsa ke-15 output counter = 0001. Kemudian output counter DCBA akan kembali menjadi 0000 bila pulsa ke-16 datang. Dari uraian di atas dapat ditarik ke­simpulan bahwa Rangkaian Down Counter dapat dipergunakan untuk menghitung dari atas ke bawah mulai dari 1111 sampai 0000.
Untuk lebih jelasnya proses menghitung dari Down Counter dapat.dilihat pada Tabel di bawah ini:
PULSA D C B A
KEADAAN AWAL 0 0 0 0
PULSA KE-1 1 1 1 1
PULSA KE-2 1 1 1 0
PULSA KE-3 1 1 0 1
PULSA KE-4 1 1 0 0
PULSA KE-5 1 0 1 1
PULSA KE-6 1 0 1 0
PULSA KE-7 1 0 0 1
PULSA KE-8 1 0 0 0
PULSA KE-9 0 1 1 1
PULSA KE-10 0 1 1 0
PULSA KE-11 0 1 0 1
PULSA KE-12 0 1 0 0
PULSA KE-13 0 0 1 1
PULSA KE-14 0 0 1 0
PULSA KE-15 0 0 0 1
PULSA KE-16 0 0 0 0
PULSA KE-17 1 1 1 1
Kembali seperti keadaan awal
Salah satu Komponen IC yang berfungsi sebagai UP/DOV , COUNTER adalah IC tipe 54/74190 atau 54LS/74LS1^ seperti gambar di bawah ini.
Gambar 5. Up /Down Diode Counter
  1. DECODE COUNTER ATAU BCD COUNTER
Counter ini dapat menghitung sebanyak 10 pulsa dan setelah itu akan kembali lagi kepada keadaan semula yaitu 0. Oleh karena itu Counter seperti ini disebut Decode Counter atau Modulus 10 Counter dan yang lainnya ada yang menyebut BCD Counter.
Perlu diketahui bahwa BCD Counter ini banyak dipakai dalam peralatan yang menggunakan Sistem Digital.
Salah satu tipe IC yang mengandung BCD Counter adalah TTL IC tipe 7490 seperti pada gambar di bawah ini:

Gambar 6. IC SN 7490
Seperti terlihat pada gambar di atas IC tipe SN 7490 tersebut mempunyai 4 buah output yaitu A, B, C, dan D.
Untuk mengetahui pemakaian IC tipe 7490 dalam suatu rangkaian maka di bawah ini diberikan  contoh rangkaian penghitung (Counter) yang menggunakan IC tipe 7490.
Gambar 7. Penghitung (Counter)
Jenis lain dari Decode Counter atau BCD Counter adalah IC tipe 54LS/74LS162 seperti pada gambar di bawah ini:

Gambar 8. BCD Counter IC tipe 54LS/74LS162
Diagram logik dari IC tipe 54LS/74LS162 adalah  seperti pada gambar dibawah ini:

Gambar 9. Logic Diagram IC tipe 54LS/74LS162
1. RANGKAIAN DECODER
Yang dinamakan Decoder adalah suatu rangkaian logika yang dapat dipergunakan untuk merubah bilangan Biner men­jadi bilangan Seperti rangkaian lainnya, maka Decoder pun mempunyai jalan masukkan (input) dan jalan keluaran (output) seperti pada gambar di bawah ini.

Gambar 10. Decoder
Berdasarkan kegunaannya Decoder dapat digolongkan atas:
-       BCD to Decimal Decoder
-       BCD to Seven Segment Decoder
5.1.          BCD TO DECIMAL DECODER
Perhatikan gambar di bawah ini:

Gambar 11. BCD to Decimal Decoder
Gambar di atas adalah salah satu contoh dari BCD to Decimal Decoder Tipe 7441 Decoder ini mempunyai 4 buah input ABCD dan 10 output di mana keempat inputnya akan menerima signal berupa Sandi BCD 8421 yang berasal dari sebuah Counter dan outputnya dihubungkan dengan sebuah alat penampil yang disebut DISPLAY. Penampil Display ini biasanya berupa tabung yang disebut NIXIE TUBE. Tabung ini dapat menampilkan angka Desimal mulai dari 0 sampai angka 9.
Rangkaian logika yang terdapat dalam BCD to Decimal Decoder tipe 7441 adalah seperti pada gambar di bawah ini:

Gambar 12. BCD to Decimal Decoder
Tabel Kebenaran dari BCD to Decimal Decoder adalah sebagai berikut:
INPUT (Masukkan) OUTPUT (Keluaran)
D C B A 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 1 11111 1 1
0 0 0 1 1 0 11111 1 1
0 0 1 0 1 1 011111 1 1
0 0 1 1 1 1 10 1111 1 1
0 1 0 0 1 1 110 111 1 1
0 1 0 1 1 1 1110 11 1 1
0 1 1 0 1 1 11110 1 1 1
0 1 1 1 1 1 111110 1 1
1 0 0 0 1 1 111111 0 1
1 0 0 1 1 1 111111 1 0

5.2.            DISPLAY
Untuk menampilkan bilangan Desimal mulai dari angka 0 sampai 9 yang dihasilkan oleh BCD to Decimai Decoder dipergunakan sebuah tabung yang disebut NIXIE TUBE. Nixie Tube adalah sejenis tabung hampa yang dilengkapi dengan sebuah kutub Anoda dan 10 buah kutub Katoda yang disusun sedemikian rupa sehingga dapat membentuk angka 0 sampai dengan 9 (bilangan Desimal).
Secara sederhana Nixie Tube dapat digambarkan sebagai berikut:


Gambar 13. Nixie Tube
Penjelasan: Jika salah satu Katoda, misalnya Katoda nomor 7 di­hubungkan dengan tegangan negatif, maka Katoda tersebut akan menyala dan Nixie Tube akan menampilkan angka 7.
  1. BCD TO SEVEN SEGMENT DECODER
Decoder jenis ini dapat dipergunakan untuk mengubah bilangan Biner dalam Sandi BCD 8421 ke dalam bilangan Desimal yang akan ditampilkan oleh sebuah penampil Seven Segment (Seven Segment Display). Penampil Seven Segment ini terdiri dari 7 buah segment yang disusun sedemikian rupa membentuk angka 8. Tiap-tiap Segment tersebut diberi tanda dengan huruf a, b, c, d, e, f dan g.
Segment-segment yang banyak dipakai adalah yang meng­gunakan prinsip lampu LED seperti pada gambar di bawah ini.

Gambar 14. Light Emiting Diode
Perhatikan gambar di bawah ini.

Gambar 15. Decoder BCD to Seven Segment
Seperti terlihat pada gambar di atas, Decoder BCD to Seven Segment mempunyai 4 buah input DCBA dan 7 buah output yang diberi tanda a, b, c, d, e, f dan g. Keempat input DCBA mendapatkan signai yang berasal dari Counter, sedangkan ketujuh outputnya dihubungkan dengan Display 7 Segment melalui tahanan sebesar 150 Ohm.
Tabel Kebenaran yang dihasilkan oleh BCD to Seven Segment adalah sebagai berikut:
ANGKA INPUT OUTPUT

A B C D a b c d e f g
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 1 1 1 1
2 0 0 0 0 0 0 1 0 0 1 0
3 0 0 0 0 0 0 0 0 1 1 0
4 0 0 0 0 1 0 0 1 1 0 0
5 0 0 0 0 0 1 0 0 1 0 0
6 0 0 0 0 1 1 0 0 0 0 0
7 0 0 0 0 0 0 0 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 1 1 0 0
Salah satu contoh komponen IC yang berfungsi sebagai BCD to 7 Segment adalah TTL IC tipe SN 54 LS/SL 240 seperti pada gambar di bawah ini:



Gambar 16. Logic Symbol and Connection Diagram PinOut A
Adapun diagram logik dari Komponen IC BCD to 7 Segment tipe SN54SL adalah seperti gambar di bawah ini.

Gambar 17.  Logic Diagram
6.1.            BCD TO SEVEN SEGMENT DENGAN LED
Seperti sudah dijelaskan di atas, Display yang banyak di­pergunakan sebagai Sevent Segment adalah Display yang menggunakan prinsip lampu LED.
Perlu diketahui untuk menyalakan LED diperlukan resistor sebesar 150 Ohm yang berfungsi untuk membatasi arus se­perti pada gambar di atas:

Gambar 18. Rangkaian LED menggunakan sebuah Resistor
Dengan menggunakan prinsip seperti gambar di atas kita dapat membuat Seven Segment seperti pada gambar di bawah ini:

Gambar 19. Rangkaian Seven Segment
Seperti terlihat pada gambar di atas, tiap-tiap Anoda dari LED disatukan dan dihubungkan dengan ground melalui tahan­an sebesar 150 Ohm. Bila Saklar di “ON” kan maka Dioda yang bersangkutan akan menyala. Dengan rangkaian seperti pada gambar di atas, maka dapat dibuat angka-angka dengan kombinasi sebagai berikut:
ANGKA YANG
SAKLAR YANG DI “ON”
DITAMPILKAN
KAN
0 a-b-c-d-e-f-g
1 b-c
2 a – b – d – e – g
3 a – b – c – d – g
4 b-c -f-g
5 a – c – d – f – g
6 c – d – e – f – g
7 a – b – c
8 a-b-c-d-e-f-g
9 a – b – c – f – g
  1. 7.     ENCODER COUNTER
Prinsip kerja rangkaian logika dari Encoder adalah ke­balikan dari Decoder yaitu menterjemahkan bahasa manusia menjadi bahasa yang dapat dibaca oleh mesin atau jelasnya merubah bilangan Desimal menjadi bilangan Biner.
Salah satu jenis Encoder adalah jenis Decimal to BCD Encoder. Seperti halnya Decoder, Encoder pun mempunyai jalan masukkan (input) dan jalan keluaran (output) seperti pada gambar di bawah ini:
Gambar 20. masukkan (input) dan jalan keluaran (output) ENCODER
Seperti terlihat pada gambar di atas, Decimal to BCD Encoder memiliki 10 buah input dan 4 buah output.
Prinsip kerja dari Encoder dapat dilukiskan secara seder­hana seperti pada gambar di bawah ini:

Gambar 21. Prinsip kerja dari Encoder
Penjelasan:
Seperti terlihat pada gambar di atas, inputnya terdiri dari 10 buah saklar dan outputnya ada 4 buah. Dalam keadaan normal, saklar-saklar dalam keadaan terbuka. Dengan demi­kian karena inputnya pintu NAND sama dengan 0 maka output­nya juga sama dengan 0. Sekarang kalau seandainya saklar no. 7 ditekan, maka input NAND GATE no. 1, 2 dan 3 menjadi 1 dan outputnya no. 1, 2, dan 3 juga menjadi 1 se-hingga output DCBA = 0111. Output 0111 kemudian disimpan semen­tara pada Register 4 BIT.
Salah satu kompo.id IC jenis Decimal to BCD Encoder yang ada di pasaran adalah jenis Decimal to BCD Encoder tipe 74147. Rangkaian logika Decimal to BCD Encoder tipe 74147 adalah seperti pada gambar di bawah ini;

Gambar 22. Rangkaian logika Decimal to BCD Encoder tipe 74147
DAFTAR PUSTASKA
  1. Electronic Integrated Circuits and Systems, Franklin C, Fitchen, Van Nostrand Reinhold Company
  2. User’s Guide Book for Digital CMOS Integrated, Eugene R. Hnatek, Mc. Graw Hill Book Company.
  3. Komponen Elektronika, Morris A. Colwell, Penerbit PT.Elex Media Komputindo Kelompok Gramedia Jakarta.
  4. Teknik Digit, Wasito S./B. Hernawa, Penerbit Karya Utama Jakarta.
  5. TTL TEXS BOOK,Fairchild.